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Abstract

Introduction
Exoplanets are planets outside of our solar system. Despite a first possible evidence for the
existence of

exoplanets in 1917, their existence has only been officially confirmed in 1992.
Since then, thousands of

exoplanets and planetary systems have been identified. In a nutshell,
exoplanets are detected by

observing the luminosity of stars and seeing whether or not they dim
at a regular interval. If so, it's

possible that this dim is caused by a planet orbiting around it.
Identifying exoplanets is the first step to

then potentially finding life outside of our solar system. Such a dim would create a sinusoidal pattern in

the light intensity measurements.

As proposed by the Drake equation, once planets are identified, we can investigate whether they could

support life, have actually developed it, potentially an intelligent form, and potentially one that can

release signals into space.

The goal of this project is to identify stars that are orbited by exoplanets. This will be a
classification

project, and our goal will be to test different methods and algorithms to obtain the
best accuracy

possible for predicting whether a star is orbited by planets or not. This will be a
classification problem.

https://en.wikipedia.org/wiki/Drake_equation


One of the main disadvantages of such a project is how heavily imbalanced the dataset is. Most stars

are
unfortunately not orbited by a planet, so most of our dataset will consist of non-exoplanet stars.
We

will need to research and implement methods to deal with this imbalance in order to
minimize its impact

on our model. Otherwise, the model could systematically predict that a star
is not orbited by an

exoplanet and still boast an incredibly high accuracy score - while remaining
completely useless and

failing to be of any help in future identification efforts.

We normalized the data, and then dealt with this imbalance using a technique called SMOTE (more on

this in the proposed methodology part), and also tried ADASYNC without noticeable improvements.

We then tested a few models individually to assess their performance and find parameters that worked

best, and then opted for an ensemble method approach. Most models were unhelpful, and we ended up

selecting a Random Forest and running a Grid Search to find the best parameters. We obtained very

good results on the SMOTE testing set, but terrible results on the original testing set. We then tried to

find a model that could at least reduce the amount of non-exoplanets star, to speed up the process of

human review and to provide a less-imbalanced dataset for future training.

In the end, we believe the training and testing sets we used are too small to train an efficient model, but

we believe that we have a solid basis for a model that could work if fed more data from the Kepler

mission. We also provide alternative ways to go about this search (image analysis, feature enrichment)

detailed in the Conclusions section.

Data

The dataset used was made available here by Winter Delta.

The training set counts 5087 observations and 3198 columns. Each observation is a star. The first

column is the label of the star: 1 if it's not orbitted by a planet, 2 if it is. We replaced 1 by 0 and 2 by 1.

The rest of the columns consists of light intensity measurements at different times. The training set

counts only 37 stars orbitted by an exoplanet.

https://www.jair.org/index.php/jair/article/view/10302
https://ieeexplore.ieee.org/document/4633969
https://www.kaggle.com/keplersmachines/kepler-labelled-time-series-data


The testing set counts 570 observations and 3198 columns as well. Just like for the training set, each

observation is a star. The first column is the label of the star: 1 if it's not orbitted by a planet, 2 if it is. We

replaced 1 by 0 and 2 by 1. The rest of the columns consists of light intensity measurements at different

times. The training set counts only 5 stars orbitted by an exoplanet.

Proposed methodology
We first normalized all of the luminosity values.

The priority was then to deal with the imbalance in the dataset. With a baseline model predicting that

none of the stars are orbitted by an exoplanet, we could achieve a 99.12% accuracy. But this model

completely fails in our objective to actually identify exoplanets.

We don't care about accuracy. We care about recall, i.e. how many relevant items are retrieved. If we

care about recall, then our baseline model has a recall of 0, which sounds a lot less impressive.

However, we still need to pay attention to out negative classes. We would be OK identifying a few stars

as orbitted by exoplanets when in reality they aren't, as these can be analyzed by expert astrophysicists

further after the algorithm offered a first selection, but we wouldn't want to miss out on an exoplanet.

That being said, we shouldn't be too lenient as we don't want to send half of the stars back for human

analysis. So we also need to pay attention to specificity.

To address the imbalance, undersampling would be useless. We don't care about reducing the number

of negative observations; we care about increasing the number of positive ones so that the algorithm

can better learn the corresponding features (light intensity patterns). Oversampling by simply copying

the existing positive observations would probably help, but we would be duplicating existing data.

We decided to implement the SMOTE (Synthetic Minority Oversampling Technique) approach. SMOTE

consists in creating new instances of the minority class. Notice these new instances are not simple

copies: the algorithm takes samples of the feature space for the target class and its nearest neighbors,

and combines the features of the target class with the features of its neighbors to create new instances.

recall =
True Positives

(True Positives + False Negatives)

specificity =
True Negatives

(True Negatives + False Positives)

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Sensitivity_and_specificity


We split this dataset, keeping 67% of the data for training and 33% for testing. However, we actually

don't care about testing on the SMOTE test set. What we're interested in is the original test set, which

has a lot less observations corresponding to stars orbitted by an exoplanet. Training on the SMOTE train

set however provided the advantage of feeding the model with a lot more examples of stars orbitted by

exoplanets.

Note: Moving forward, we will refer to the SMOTE datasets as the SMOTE training and testing sets, and

to the training and testing sets introduced in the data section as the original training and testing sets).

Note: We also implemented an oversampling technique called ADASYN, which is derived from SMOTE,

to see if we would get better results trqining our model on such a dataset. We didn't witness any

noticeable improvement.

We then set a random seed equal to 42 to use in the models where appropriate, and tried different

classifiers. Considering the state of the dataset, it was difficult to assess which classifier would work

and which wouldn't. We ran different models to see which ones provided encouraging results. Most

classifiers completely failed: standard Support Vector Machines, K-Nearest Neighbor, Quadratic

Discriminant Analysis, Adaboost, or even neural net displayed a very low recall. Logistic Regression,

Decision Tree and Random Forest provided encouraging results, with a recall ranging from 0.4 to 0.6.

We decided to favor an ensemble model, as they tend to display better performance overall and also

robustness. We trained a voting classifier, but this didn't improve results as the stars correctly identified

were the same for all the models, so there was no combined effectiveness improvement effect. We

decided to focus on the Random Forest model. Tweaking the hyperparameters with a grid search, we

managed to obtain a recall of 1 on the SMOTE testing set, and of 0.8 on the original testing set (thus

correctly identifying 4 stars orbitted by an exoplanet, out of 5).

Analysis and results

The good: results on the SMOTE test set

Having detailed our general approach and failures above, in this section we will present results for the

https://ieeexplore.ieee.org/document/4633969


best model we obtained, but we won't present results for all the suboptimal models that we tried.

The best results we got were obtained with an ensemble model, a Random Forest Classifier with:

a class weight balanced for the minority class

a gini criterion

a maximum depth of 20

a maximum number of features equal to the log2 of the number of features in the dataset

a minimum number of samples required to be at a leaf node set at 10

a number of trees in the forest set to 45

Training this model on the SMOTE training data, and testing it on the SMOTE testing data, we obtained

both very good recall and specificity:

This looks really great:

the model correctly identifies almost all stars orbitted by an exoplanet correctly (recall score of

99.63%)

the model correctly identifies almost all stars not orbitted by an exoplanet correcly (specificity

score of 99.88%)

The bad: results on the original test set

This is where the whole performance unfortunately deteriorates. Testing the model above on the test

set, we obtain terrible results.

Basically, using the model above, that seemed to perform so well, on the training set, we get a recall of

0. We fail to identify any of the actual exoplanets. This was a surprise for us as we expected the model

to have picked up a pattern, and to identify the exoplanets as all the positive examples in SMOTE were

derive from the 5 original exoplanets.

The ugly: lowering our expectations

We retrained the random forest model, optimizing for recall but allowing for a low specificity. The



objective of such a manipulation, in light of our failure to generalize our model and to hand off a certain

selection of all exoplanets (and just that), is to provide a model that can reduce the sample and

eliminate stars that are certainly not orbitted by an exoplanet.

We used the following model, a Random Forest Classifier with:

a class weight of 1 for the negative class (absence of exoplanet)

a class weight of 1 for the positive class (presence of exoplanet)

a gini criterion

a maximum depth of 50

a maximum number of features equal to the log2 of the number of features in the dataset

a minimum number of samples required to be at a leaf node set at 40

a number of trees in the forest set to 60

Doing so, we don't miss out on any exoplanets (no False Negatives). We end up with 210 True

Negatives, and 355 False Positives. This is far from our ideal result, but the good news is that we can

rule out 36.8% of the observations (True Negatives). So we our model at least has the advantage, if not

to identify exoplanets, at least to rule out a non-negligible amount of observations and to reduce the

amount of data that should be analyzed. This reduced data can then be reviewed by human experts,

which would still save time compared to the original dataset, or to provide a reduced dataset with

decreased imbalance for training further models.

Conclusion

Possible future work

Adding more observations

The dataset provided by Winter Delta counts 5,657 star observations in total, but the Kepler mission

monitored over 100,000 stars over its course. The whole data for the Kepler mission is available
on the

Mikulski Archive for Space Telescopes website, so the integrality of the data could be used. More

qualified data would most likely help improve the model. Doing so would require some additional data

preprocessing effort on the light curves data to match the structure of the Winter Delta dataset, and to

convert .fits  data to the .csv  format. We could rely on the Kepler Data Processing Handbook for

this effort. The data might also be enriched with K2 campaign data, K2 being the mission that followed

into
the Kepler mission footsteps.

Leveraging image data

More data could also be be added on top of the simple light intensity observations to feed more

features to our model (full frame images, target pixel files...). Image analysis and computer vision

techniques could then be leveraged, but might prove computing intensive or costly.

Adding more variables

In this project, we rely on a unique variable: light intensity. More features could prove useful for

identification, for example orbital period, transit epoch, eccentricity value, longitude of periastron,

transition period, transit depth, object radius... All of this data can be gathered if we suspect the star is

orbitted by an object. Such data is already gathered by NASA in the Kepler Objects of Interest Table.

Improving model understanding of exoplanets

There is an open catalogue of identified exoplanets that is maintained and updated on a GitHub

repository by Hanno Rein, an astrophysics professor at the univeristy of Toronto. A model could be

https://archive.stsci.edu/missions-and-data/kepler
https://archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/kepler/_documents/KSCI-19081-002-KDPH.pdf
https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html
http://openexoplanetcatalogue.com/
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue


trained on such a dataset to better learn and memorize the characteristics of exoplanets, and improve

identification results, especially if coupled with the addition of features as suggested above.

Experimenting with neural networks

We tried a simple neural network which didn't yield encouraging results, but it's possible that a well-

tuned neural network could outperform our current model. It's worth a try.

Lessons learned
This dataset being a time series, in retrospect it may not have been the best choice as a final project for

this course, which among other things offered techniques about variable selection which could not be

implemented in this project.

It's also a heavily imbalanced dataset on an expert scientific topic, and although it's a fascinating topic

to work on in our opinion, it might have been a little ambitious to believe we would be able to offer a

really good solution to the problem of identifying exoplanets. A training set with 37 observations and a

testing set with only 5 observations corresponding to our item of interest might simply be too low and

insufficient for our initial objective.

Appendix

Setup

Data

In [1]: import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np



from sklearn.ensemble import AdaBoostClassifier, \

                             RandomForestClassifier, \

                             VotingClassifier



from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import CategoricalNB

from sklearn.neighbors import KNeighborsClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier



from imblearn.over_sampling import SMOTE

from sklearn.metrics import accuracy_score, \

                            classification_report, \

                            confusion_matrix, \

                            ConfusionMatrixDisplay, \

                            f1_score, \

                            make_scorer, \

                            recall_score, \

                            roc_curve, \

                            precision_score



from sklearn.model_selection import cross_val_score, \

                                    train_test_split, \

                                    GridSearchCV





teal = '#007791'

pd.set_option('display.max_columns', 9)




5087

570

0    5050

1      37

Name: LABEL, dtype: int64

0

0    565

1      5

Name: LABEL, dtype: int64

0

5050

In [2]: train = pd.read_csv('data/exoTrain.csv')

test = pd.read_csv('data/exoTest.csv')


In [3]: len(train)


Out[3]:

In [4]: len(test)


Out[4]:

In [5]: mapping = {1: 0, 2: 1}

train['LABEL'] = train['LABEL'].map(mapping)

test['LABEL'] = test['LABEL'].map(mapping)


In [6]: train_x, train_y = train.drop('LABEL', axis=1), train.LABEL

test_x, test_y = test.drop('LABEL', axis=1), test.LABEL


In [7]: #train.head()


In [8]: #train.describe()


In [9]: train['LABEL'].value_counts()


Out[9]:

In [10]: train.isnull().sum().sum()


Out[10]:

In [11]: #test.head()


In [12]: #test.describe()

In [13]: test['LABEL'].value_counts()


Out[13]:

In [14]: test.isnull().sum().sum()


Out[14]:

In [15]: train_none = train[train['LABEL'] == 0].drop('LABEL', axis=1)

len(train_none)


Out[15]:



Baseline model

0.9912280701754386

Normalize and standardize

Class imbalance

<matplotlib.legend.Legend at 0x12587c4f0>

SMOTE

In [16]: baseline = pd.DataFrame(0, index=np.arange(len(test)), columns=['LABEL'])

comparison = baseline.LABEL == test.LABEL

comparison.sum() / len(comparison)


Out[16]:

In [17]: train_label = train[['LABEL']]



min = train.drop(['LABEL'], axis=1).min().min()

max = train.drop(['LABEL'], axis=1).max().max()

norm_train = (train.drop(['LABEL'], axis=1) - min) / (max - min)

norm_train = pd.concat([train_label, norm_train], axis=1)

#norm_train.head()


In [18]: test_label = test[['LABEL']]



min = test.drop(['LABEL'], axis=1).min().min()

max = test.drop(['LABEL'], axis=1).max().max()

norm_test = (test.drop(['LABEL'], axis=1) - min) / (max - min)

norm_test = pd.concat([test_label, norm_test], axis=1)

#norm_test.head()


In [19]: norm_train_x, norm_train_y = norm_train.drop('LABEL', axis=1), norm_train.LABEL

norm_test_x, norm_test_y = norm_test.drop('LABEL', axis=1), norm_test.LABEL


In [20]: norm_train['LABEL'].value_counts() \

              .reset_index()  \

              .plot(kind='bar', x='index', y='LABEL', rot=0, color=teal, width=0.8, tit
              .legend(loc='upper right')

#plt.savefig(fname='004', format='png', dpi=400)

#plt.show()

Out[20]:



0    5050

1    5050

Name: LABEL, dtype: int64

<matplotlib.legend.Legend at 0x1250e9b80>

ADASYN

Modeling

Ensemble method on SMOTE

In [21]: model = SMOTE()

smote_x, smote_y = model.fit_resample(norm_train_x, norm_train_y)

smote_y = smote_y.astype('int')


In [22]: smote_y.value_counts().sort_index()


Out[22]:

In [23]: smote_y.value_counts() \

       .sort_index()   \

       .plot(kind='bar', x='index', y='LABEL', rot=0, color=teal, width=0.8,

             title='Dataset imbalance solved') \

       .legend(loc='upper right')



#plt.savefig(fname='005', format='png', dpi=400)

#plt.show()

Out[23]:

In [24]: smote_train_x, smote_test_x, smote_train_y, smote_test_y = train_test_split(smote_x, sm
                                                                            test_size=0
                                                                            random_stat

In [25]: from imblearn.over_sampling import ADASYN 



ada = ADASYN(random_state=42)

ada_x, ada_y = ada.fit_resample(norm_train_x, norm_train_y)



ada_train_x, ada_test_x, ada_train_y, ada_test_y = train_test_split(ada_x, ada_y,

                                                                    test_size=0.33,

                                                                    random_state=42)


In [26]: # Set seed

seed = 42



# Define function to get model results

def get_model_results(X_train, y_train, X_test, y_test, model):




Ensemble accuracy (testing data) 0.4298245614035088

Ensemble with SMOTE F-score (testing data) 0.024024024024024027

Ensemble with SMOTE recall (testing data) 0.8

              precision    recall  f1-score   support


           0       1.00      0.43      0.60       565

           1       0.01      0.80      0.02         5


    accuracy                           0.43       570

   macro avg       0.50      0.61      0.31       570

weighted avg       0.99      0.43      0.59       570


[[241 324]
 [  1   4]]


    model.fit(X_train, y_train)

    prediction = model.predict(X_test)

    print('Ensemble accuracy (testing data)', accuracy_score(y_test, prediction))
    print('Ensemble with SMOTE F-score (testing data)', f1_score(y_test, prediction))

    print('Ensemble with SMOTE recall (testing data)', recall_score(y_test, prediction)
    print(classification_report(y_test, prediction))

    print(confusion_matrix(y_test, prediction))

    



# Define the classifiers to use in the ensemble

clf1 = LogisticRegression(class_weight={0:1, 1:15}, random_state=seed)

clf2 = MLPClassifier(max_iter=300)

#clf2 = DecisionTreeClassifier(max_depth=5, class_weight={0: 1, 1: 12}, random_state=se
clf3 = RandomForestClassifier(class_weight={0: 1, 1: 12}, criterion='gini', max_depth=1
                              min_samples_leaf=104, n_estimators=150, n_jobs=-1, random
clf4 = KNeighborsClassifier(n_neighbors=1, weights='distance')

#clf5 = SVC(C=0.1, kernel='poly', random_state=seed)

clf7 = QuadraticDiscriminantAnalysis()

clf8 = AdaBoostClassifier(n_estimators=100, random_state=seed)



# Combine the classifiers in the ensemble model

ensemble_model = VotingClassifier(estimators=[#('lr', clf1),

#                                              ('nn', clf2)],

                                              ('rf', clf3)],

#                                              ('knc', clf4)],

#                                              ('svc', clf5),

#                                              ('qda', clf7)],

#                                              ('adb', clf8)],

                                              voting='hard')



# Get the results 

get_model_results(smote_train_x, smote_train_y, test_x, test_y, ensemble_model)


In [27]: rf = RandomForestClassifier(class_weight={0:1, 1:1}, criterion='gini', max_depth=50, ma
                            min_samples_leaf=40, n_estimators=60, n_jobs=-1, random_sta


rf.fit(smote_train_x, smote_train_y)

prediction = rf.predict(smote_test_x)

    

#ConfusionMatrixDisplay.from_predictions(smote_test_y, prediction, cmap='winter')

#plt.title('Confusion Matrix - Random Forest with SMOTE (SMOTE testing data)')

#plt.savefig(fname='011.png', format='png', dpi=400)

#plt.show()

In [28]: rf = RandomForestClassifier()



param_grid = { 

    'class_weight': ['balanced'],

    'n_estimators': [15,30,45,60],

    'max_features': ['log2'],

    'max_depth' : [10,20,30,40],

    'min_samples_leaf': [10,20,30,40],

    'criterion': ['gini', 'entropy'],




Fitting 5 folds for each of 128 candidates, totalling 640 fits

{'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 20, 'max_features': 'log
2', 'min_samples_leaf': 10, 'n_estimators': 15, 'n_jobs': -1}


Ensemble method on ADASYN

Fitting 5 folds for each of 128 candidates, totalling 640 fits

{'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 20, 'max_features': 'log
2', 'min_samples_leaf': 10, 'n_estimators': 60, 'n_jobs': -1}


    'n_jobs': [-1]

}



scorers = {'Recall': make_scorer(recall_score)}#, 'Specificity': make_scorer(recall_sco


grid_rf = GridSearchCV(rf, param_grid=param_grid, scoring=scorers, cv=5, verbose=1, ref

In [29]: grid_rf.fit(smote_train_x, smote_train_y)

print(grid_rf.best_params_)

prediction = grid_rf.predict(smote_test_x)

    

#ConfusionMatrixDisplay.from_predictions(smote_test_y, prediction, cmap='winter')

#plt.title('Confusion Matrix - Random Forest with SMOTE (testing data)')

#plt.savefig(fname='011.png', format='png', dpi=400)

#plt.show()

In [30]: prediction = grid_rf.predict(norm_test_x)



#ConfusionMatrixDisplay.from_predictions(norm_test_y, prediction, cmap='winter')

#plt.title('Confusion Matrix - Random Forest with SMOTE (original testing data)')

#plt.savefig(fname='011.png', format='png', dpi=400)

#plt.show()

In [31]: rf = RandomForestClassifier()



param_grid = { 

    'class_weight': ['balanced'],

    'n_estimators': [15,30,45,60],

    'max_features': ['log2'],

    'max_depth' : [10,20,30,40],

    'min_samples_leaf': [10,20,30,40],

    'criterion': ['gini', 'entropy'],

    'n_jobs': [-1]

}



scorers = {'Recall': make_scorer(recall_score), 'Specificity': make_scorer(recall_score


grid_rf = GridSearchCV(rf, param_grid=param_grid, scoring=scorers, cv=5, verbose=1, ref


grid_rf.fit(ada_train_x, ada_train_y)



print(grid_rf.best_params_)



prediction = grid_rf.predict(ada_test_x)



#ConfusionMatrixDisplay.from_predictions(ada_test_y, prediction, cmap='winter')

#plt.title('Confusion Matrix - Random Forest with SMOTE (SMOTE testing data)')

#plt.savefig(fname='011.png', format='png', dpi=400)

#plt.show()

In [32]: prediction = grid_rf.predict(norm_test_x)

    

#ConfusionMatrixDisplay.from_predictions(norm_test_y, prediction, cmap='winter')

#plt.title('Confusion Matrix - Random Forest with SMOTE (original testing data)')
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